[Proposed] 0.005

Author

김보람

Published

February 12, 2024

imports

import pandas as pd
import numpy as np
import sklearn
import pickle 
import time 
import datetime
import warnings
warnings.filterwarnings('ignore')
%run function_proposed_gcn.py
with open('fraudTrain.pkl', 'rb') as file:
    fraudTrain = pickle.load(file)    
df = fraudTrain[::10]

df = df.reset_index(drop=True)

df.is_fraud.mean()

df_train, df_test = sklearn.model_selection.train_test_split(df)
def edge_index(df, unique_col, theta, gamma):
    groups = df.groupby(unique_col)
    edge_index = np.array([item for sublist in (compute_time_difference(group) for _, group in groups) for item in sublist])
    edge_index = edge_index.astype(np.float64)
    # filename = f"edge_index{str(unique_col).replace(' ', '').replace('_', '')}.npy"  # 저장
    # np.save(filename, edge_index)
    edge_index[:,2] = (np.exp(-edge_index[:,2]/(theta)) != 1)*(np.exp(-edge_index[:,2]/(theta))).tolist()
    edge_index = torch.tensor([(int(row[0]), int(row[1])) for row in edge_index if row[2] > gamma], dtype=torch.long).t()
    return edge_index
    
def gcn_data(df):
    x = torch.tensor(df['amt'].values, dtype=torch.float).reshape(-1,1)
    y = torch.tensor(df['is_fraud'].values,dtype=torch.int64)
    data = torch_geometric.data.Data(x=x, edge_index = edge_index, y=y, train_mask = mask[0], test_mask= mask[1])
    return data
    
def evaluation(y, yhat):
    metrics = [sklearn.metrics.accuracy_score,
               sklearn.metrics.precision_score,
               sklearn.metrics.recall_score,
               sklearn.metrics.f1_score,
               sklearn.metrics.roc_auc_score]
    return pd.DataFrame({m.__name__:[m(y,yhat).round(6)] for m in metrics})    

def compute_time_difference(group):
    n = len(group)
    result = []
    for i in range(n):
        for j in range(n):
            time_difference = abs((group.iloc[i].trans_date_trans_time - group.iloc[j].trans_date_trans_time).total_seconds())
            result.append([group.iloc[i].name, group.iloc[j].name, time_difference])
    return result
groups = df.groupby('cc_num')
edge_index = np.array([item for sublist in (compute_time_difference(group) for _, group in groups) for item in sublist])
edge_index = edge_index.astype(np.float64)
filename = f"edge_index_01.npy"  # 저장
np.save(filename, edge_index)
edge_index[:,2].mean()
11661268.505973412
edge_index[:,2] = (np.exp(-edge_index[:,2]/(theta)) != 1)*(np.exp(-edge_index[:,2]/(theta))).tolist()
groups = df.groupby(unique_col)
    edge_index = np.array([item for sublist in (compute_time_difference(group) for _, group in groups) for item in sublist])
    edge_index = edge_index.astype(np.float64)
    # filename = f"edge_index{str(unique_col).replace(' ', '').replace('_', '')}.npy"  # 저장
    # np.save(filename, edge_index)
    edge_index[:,2] = (np.exp(-edge_index[:,2]/(theta)) != 1)*(np.exp(-edge_index[:,2]/(theta))).tolist()
    edge_index = torch.tensor([(int(row[0]), int(row[1])) for row in edge_index if row[2] > gamma], dtype=torch.long).t()
edge_index = edge_index(df,'cc_num', 8.028000e+04, 0.3)
data = gcn_data(df)
model = GCN1()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
yy = (data.y[data.test_mask]).numpy()
yyhat = train_and_evaluate_model(data, model, optimizer)
results1=evaluation(yy,yyhat)
NameError: name 'df3' is not defined
8.028000e+04
80280.0
df_results = try_2(fraudTrain, 10, 0.0058, 0.005836, 0.8, 0.3)
IndexError: index 0 is out of bounds for dimension 0 with size 0
df_results
try_2??
Signature: try_2(df, fraud_rate, test_fraud_rate, theta, gamma, prev_results=None)
Docstring: <no docstring>
Source:   
def try_2(df, fraud_rate, test_fraud_rate, theta, gamma, prev_results=None):
    if prev_results is None:
        df_results = pd.DataFrame(columns=[
            'model', 'time', 'acc', 'pre', 'rec', 'f1', 'auc', 'graph_based', 
            'method', 'throw_rate', 'train_size', 'train_cols', 'train_frate', 
            'test_size', 'test_frate', 'hyper_params', 'theta', 'gamma'
        ])
    else:
        df_results = prev_results.copy()
        
    df = df[::10]
    df = df.reset_index()
    df_tr, df_tst = sklearn.model_selection.train_test_split(df)
    df = pd.concat([df_tr, df_tst])
    train_mask = np.concatenate((np.full(len(df_tr), True), np.full(len(df_tst), False)))    # index꼬이는거 방지하기 위해서? ★ (이거,, 훔,,?(
    test_mask =  np.concatenate((np.full(len(df_tr), False), np.full(len(df_tst), True))) 
    mask = (train_mask, test_mask)
    
    groups = df.groupby('cc_num')
    edge_index = np.array([item for sublist in (compute_time_difference(group) for _, group in groups) for item in sublist])
    edge_index = edge_index.astype(np.float64)
    edge_index[:,2] = (np.exp(-edge_index[:,2]/(theta)) != 1)*(np.exp(-edge_index[:,2]/(theta))).tolist()
    edge_index = torch.tensor([(int(row[0]), int(row[1])) for row in edge_index if row[2] > gamma], dtype=torch.long).t()
    
    x = torch.tensor(df['amt'].values, dtype=torch.float).reshape(-1,1)
    y = torch.tensor(df['is_fraud'].values,dtype=torch.int64)
    data = torch_geometric.data.Data(x=x, edge_index = edge_index, y=y, train_mask = mask[0], test_mask= mask[1])
    
    model = GCN1()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
    yy = (data.y[data.test_mask]).numpy()
    yyhat, yyhat_ = train_and_evaluate_model(data, model, optimizer)
    yyhat_ = yyhat_.detach().numpy()
    eval = evaluation(yy, yyhat, yyhat_)
    
    result = {
        'model': 'GCN',
        'time': None,
        'acc': eval['acc'],
        'pre': eval['pre'],
        'rec': eval['rec'],
        'f1': eval['f1'],
        'auc': eval['auc'],
        'graph_based': True,
        'method': 'Proposed',
        'throw_rate': fraud_rate,
        'train_size': len(df_tr),
        'train_cols': 'amt',
        'train_frate': df_tr.is_fraud.mean(),
        'test_size': len(df_tst),
        'test_frate': test_fraud_rate,
        'hyper_params': None,
        'theta': theta,
        'gamma': gamma
    }
    
    df_results = df_results.append(result, ignore_index=True)
    
    return df_results
File:      ~/Dropbox/GNNpaper/posts/function_proposed_gcn.py
Type:      function